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Applying CNNs to 3D deep learning
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Krizhevsky et al, 2012https://sthalles.github.io/deep_segmentation_network/MNIST

2D data (images)

3D data (triangle meshes)

?
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Graph CNNs 

MeshCNN [Hanocka et al, 2019]

CNNs on meshes / charting approaches 
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Charting approaches (CNNs: 2D to 3D)
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2D 3D

https://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/



Charting approaches
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a) define a kernel on

b) apply kernel to 
    tangent plane

Gaussian kernel on R2
https://www.youtube.com/watch?v=kg1wRBGUYqk

e.g., with exponential map, see  
GeodesicCNN [Masci et al 2015]

Different kernels are possible, see
● [Poulenard and Ovsjanikov 2018]
● [Boscaini et al. 2016]
● [Monti et al. 2017]



The Vector Heat Method
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N. Sharp, Y. Soliman, and K. Crane, ACM Trans. Graph. 38(3), 2019

Allows efficiently computing 
tangent spaces on meshes 
and parallel transport maps

Vector Heat Method

triangle mesh



Charting approaches: limitations
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Rotation ambiguity
Convolving

how to move the filter along surface 
manifold without introducing rotations?



Proposed approach
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● Features expressed as complex vectors  

● Use circular harmonics (harmonic networks: learn 
radial and angular parameters)
○ rotational-equivariant kernels

● Propose convolutional filters that apply to surfaces
○ Idea: circular harmonics + parallel transport



Circular harmonics
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rotational 
 invariant

Input rotational 
 equivariant

circular harmonic filters

Polar coordinates

Radial profile

Phase offset

Rotation order

rotation equivariance



Circular harmonics => Harmonic Nets
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[Poulenard and Guibas 2021] uses “spherical” 
harmonics instead, since 3D pointcloud



Parallel Transport (exponential map)

12



Convolution on a surface
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Convolution on a surface
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circular harmonics (H-Net)
(rotation equivariant)

parallel transport

integration weights
(depend on mesh)



ReLU
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Only the magnitude (radius) of               is changed



Model architecture
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deep U-ResNet architecture from [Poulenard and Ovsjanikov 2018]



Dataset and metrics
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● shape classification: SHREC dataset [Lian et al. 2011],

● correspondence: FAUST dataset [Bogo et al. 2014]

● shape segmentation: human segmentation dataset [Maron et al. 2017]



Results
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HSNs perform better than state-of-the-art

shape classification shape segmentation



Features visualization + ablation
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● Proposed convolutional filters that apply to surfaces
○ Idea: circular harmonic kernels + parallel transport

Rotational invariant/equivariant depending on filter order M

● Better performance and requires less parameters than other approaches

● Next: 

○ using the learned features / representations for other tasks

○ extensions to pointclouds

Conclusion
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