

#### CNNs on Surfaces using Rotation-Equivariant Features

Ruben Wiersma, Elmar Eisemann, and Klaus Hildebrandt

ACM Transactions on Graphics, 39(4), 2020

Gifs: https://rubenwiersma.nl/hsn

Paper presentation by Thomas Lew, 02/09/2022

# Applying CNNs to 3D deep learning







# Applying CNNs to 3D deep learning





# CNNs on meshes / charting approaches

#### **Graph CNNs**





MeshCNN [Hanocka et al, 2019]

# Charting approaches (CNNs: 2D to 3D)



# Charting approaches

# a) define a kernel on $\mathbb{R}^2$



Gaussian kernel on R2 https://www.youtube.com/watch?v=kg1wRBGUYqk

Different kernels are possible, see

- [Poulenard and Ovsjanikov 2018]
- [Boscaini et al. 2016]
- [Monti et al. 2017]

b) apply kernel to tangent plane  $T_pS\cong \mathbb{R}^2$ 



e.g., with exponential map, see GeodesicCNN [Masci et al 2015]

#### The Vector Heat Method

N. Sharp, Y. Soliman, and K. Crane, ACM Trans. Graph. 38(3), 2019



# Charting approaches: limitations





Rotation ambiguity

Convolving how to move the filter along surface manifold without introducing rotations?

# Proposed approach

- Features expressed as complex vectors  $Xe^{i heta}$
- Use circular harmonics (harmonic networks: learn radial and angular parameters)
   rotational-equivariant kernels
- Propose convolutional filters that apply to surfaces
  - Idea: circular harmonics + parallel transport



# Circular harmonics

circular harmonic filters

 $W_m(r, heta,R,eta)=R(r)e^{i(m heta+eta)}$ 

rotation equivariance  $[W_m\star x^{\phi}](p)=e^{im\phi}[W_m\star x^0](p)$  a) Polar coordinates  $(r, \theta)$  $R:\mathbb{R}_+ o\mathbb{R}$ Radial profile β Phase offset  $m \in \mathbb{Z}$ Rotation order



#### Circular harmonics => Harmonic Nets

 $[W_m\star x^{\phi}](p)=e^{im\phi}[W_m\star x^0](p)$ 





[Poulenard and Guibas 2021] uses "spherical" harmonics instead, since 3D pointcloud



### Parallel Transport (exponential map)

$$P_{j
ightarrow i}(x_j)=e^{i\phi_{ij}}x_j$$





### Convolution on a surface

$$x_i^{(\ell+1)} = \sum_j w_j \left( R(r_{ij}) e^{i(m heta_{ij}+eta)} P_{j
ightarrow i}(x_j^{(\ell)}) 
ight)$$

# Convolution on a surface



ReLU

# $Xe^{i\theta} \mapsto \operatorname{ReLU}(X+b)e^{i\theta}$

Only the magnitude (radius) of  $Xe^{i heta}$  is changed

### Model architecture

deep U-ResNet architecture from [Poulenard and Ovsjanikov 2018]



### Dataset and metrics

- shape classification: SHREC dataset [Lian et al. 2011],
- correspondence: FAUST dataset [Bogo et al. 2014]
- shape segmentation: human segmentation dataset [Maron et al. 2017]

### **Results** HSNs perform better than state-of-the-art

#### shape classification

| Accuracy |
|----------|
| 96.1%    |
| 91.0%    |
| 90.3%    |
| 88.6%    |
| 82.2%    |
| 73.9%    |
| 62.6%    |
| 60.8%    |
| 52.7%    |
|          |





Hand

#### shape segmentation

| Method      | # Features | Accuracy |
|-------------|------------|----------|
| HSN (ours)  | 3          | 91.14%   |
| MeshCNN     | 5          | 92.30%   |
| SNGC        | 3          | 91.02%   |
| PointNet++  | 3          | 90.77%   |
| MDGCNN      | 64         | 89.47%   |
| Toric Cover | 26         | 88.00%   |
| DynGraphCNN | 64         | 86.40%   |
| GCNN        | 64         | 86.40%   |
| ACNN        | 3          | 83.66%   |



#### Features visualization + ablation



Fig. 13. Architecture for classification of Rotated MNIST.

Table 4. Results of HSN tested on shape segmentation for multiple configurations.

| Method              | Streams ( $M = \ldots$ ) | Accuracy |
|---------------------|--------------------------|----------|
| HSN                 | 0, 1                     | 91.14%   |
| HSN                 | 0                        | 88.74%   |
| HSN (parameters ×4) | 0                        | 87.25%   |
| HSN (pc aligned)    | 0, 1                     | 86.22%   |



Fig. 14. Validation accuracy per training epoch several configurations of HSN on shape segmentation.

# Conclusion

- Proposed convolutional filters that apply to surfaces
   Idea: circular harmonic kernels + parallel transport
  - Rotational invariant/equivariant depending on filter order M
- Better performance and requires less parameters than other approaches
- Next:
  - using the learned features / representations for other tasks
  - extensions to pointclouds



#### CNNs on Surfaces using Rotation-Equivariant Features

Ruben Wiersma, Elmar Eisemann, and Klaus Hildebrandt

ACM Transactions on Graphics, 39(4), 2020

Paper presentation by Thomas Lew, 02/09/2022